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Abstract

Modern Neural Networks are often over-parameterized while a model’s perfor-
mance could be achieved with fewer parameters. Model pruning methods take
advantage of over-parameterization by pruning redundant parameters that reduce
computational overhead while maintaining comparable performance. Such meth-
ods locate the redundant parameters by estimating an importance score for each
parameter and then prune the parameters with the lowest scores. Conversely,
other lines of work [19, 40, 10] make use of parameter importance estimation
by encouraging all parameters to contribute equally, which results in improved
performance across different tasks. In our work, we break down the design of
state-of-the-art methods that harness parameter importance during training and
present a unified framework that establishes connections between them. Moreover,
we identify the serious computational overhead induced by previous importance-
guided optimization methods and propose a novel and lightweight approach that
harnesses parameter importance during training that requires neither additional
forward passes nor storing a full copy of the model throughout training. Compre-
hensive experiments on Machine Translation and Language Model Fine-tuning
showcase the efficiency of our method. We are able to observe a 2.4 × boost
in training speed and a 60.8% reduction in memory while achieving comparable
performance to strong baselines.

1 Introduction

Model pruning removes redundant parameters to reduce the cost in both training [6, 22, 7, 42, 33, 37]
and inference [39, 15, 8] while achieving comparable performance. The negligible degradation in
performance after model pruning suggests that there exist many redundant parameters that do not
contribute. Pruning algorithms first estimate an "importance score" for each individual [6, 7] or group
[25, 39] of parameters, and remove parameters with low importance.

However, recent works [19, 40] hypothesize that redundant parameters are actually a by-product of
our current optimization methods, and thus proposed optimizers [19] or auxiliary loss functions [40]
to balance the contribution of parameters in neural networks. The effectiveness of these methods when
applied to a wide range of tasks and model architectures indicates that such redundant parameters are
insufficiently trained, and through better optimization techniques, we can improve the generalizability
of models by explicitly using information about parameter contribution during training.

Findings on harnessing parameter importance during training can be useful not only in model
pruning but also in model training echoing the findings in continual learning literature [14, 10] where
regularizing the updates of important parameters can overcome catastrophic forgetting [9]. We show
that such methods can be extended beyond continual learning and improve the generalizability of
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Method No Additional Forward Passes No Additional Memory

Intra-Distillation [40] ✘ ✘
EWC [14] ✘ ✘
LFR-CM [10] ✘ ✘
SAGE [19] ✔ ✘
Weighted Freezing (Ours) ✔ ✔

Table 1: An overview of the computational overhead induced by different methods that balance
parameter contribution. Our proposed method requires neither multiple forward passes through the
model nor additional memory to store the importance of each parameter.

models even trained on a single task. In our work, we present a unified view of methods that make
use of parameter importance during training. Using this novel formulation, we are able to cultivate a
deeper understanding of these methods and shed light on designing future optimization methods that
make use of parameter importance.

Moreover, previous studies all introduce serious computational overhead either by estimating parame-
ter importance after every gradient update, storing importance scores from previous iterations for a
more accurate estimate of importance [14, 10, 19] or passing the input to the model multiple times
[40] to train on a different subset of parameters by utilizing the randomness in dropout [32]. However,
the computational overhead introduced by such methods can severely hinder training efficiency when
the model and data size is scaled up. We provide a comparison between the computational overhead
induced by previous state-of-the-art methods In Table 1.

In our work, we first break down the design of previous methods and draw the connection between
them and Elastic Weight Consolidation (EWC) [14] to show that they either implicitly or explicitly en-
courage parameters to contribute equally (§3.1). We thus present a unified view of importance-guided
optimization methods (§3.2). We then aim to reduce the computational overhead of such methods
by proposing our new method that balances parameter contribution with minimal computational
overhead (§4). To sum up, our contribution is two-fold:

1. We systematically study the state-of-the-art methods that encourage individual parameters to
contribute equally and present a unified view of such methods, and demonstrate that they all
induce serious computational overhead, which hinders their application on larger models;

2. We propose a novel method that balances parameter contribution with minimal computational
overhead. Comprehensive experiments show the effectiveness and efficiency of our method
across mono and multilingual language model fine-tuning and machine translation.

2 Preliminaries

In model pruning literature, the importance of a single parameter is often measured by the increase in
the loss when the parameter is removed from the model, or by the magnitude of the parameter itself.
In continual learning literature, the importance of a parameter is measured by the smoothness of the
loss function around the parameter, often approximated by the empirical Fisher [24]. We provide an
overview of parameter importance estimation metrics at §2.1 and provide the background on two
existing methods that balance parameter contribution: §2.2 SAGE [19], §2.3 Intra-Distillation [40],
as well as two methods that harness parameter importance in continual learning: §2.4 EWC [14] and
§2.5 LFC-CM [10]. We then establish a connection between them in §3.

2.1 Importance Estimation of Parameters

Loss-Preserving. The canonical way to estimate the importance of parameters θj is measured by the
difference in loss before and after θj is removed from the model by zeroing it out. We use θj=0 to
denote the set of parameters when θj = 0. We use I(θj) to denote the importance scores of one or a
set of parameters θj and L(θ) to denote the loss function, the loss-preserving metric for parameter
importance estimation is given by:
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I(θj) = |L(θ)− L(θj=0)| (1)

Approximating L(θj) using a first-order Taylor expansion yields:

I(θj) = |L(θ)− L(θj=0)| ≈
∣∣∣∣���L(θ)−

(
�

��L(θ)− ∂L(θ)
∂θj

(θj − 0)

)∣∣∣∣ = ∣∣∣∣∂L(θ)∂θj
(θj − 0)

∣∣∣∣
This importance metric was originally proposed to prune convolutional networks [26, 27, 34], which
is then extended to Transformer pruning [19, 40].

Magnitude. Another line of work [6, 7, 30] uses the magnitude of parameters as the importance to
prune models:

I(θj) = |θj |

Further research [23] shows that the magnitude-based metric also measures how well the parameter
preserves loss, establishing an equivalency between the loss-preserving importance score and the
magnitude-based metric importance score so that in model pruning, their interchangeable use is
justified.

Fisher Information. The loss-preserving and magnitude-based metric is proposed to measure
the importance of parameters in models after training for pruning. Although such methods of
estimation are also well justified after minimal training [23], a more natural way to estimate parameter
importance is by the local curvature of the loss function around a parameter (The Hessian of the
loss function), which measures how well each parameter preserves the gradient dynamics during
training. In practice, we approximate the Hessian with the empirical Fisher Information Matrix [5,
24].

I(θj) = ∇2L ≈ F (θj) ≈
(
∂L(θ)
∂θj

)(
∂L(θ)
∂θj

)⊤

2.2 Importance Weighted Optimization Methods

In this section, we introduce methods recently proposed to balance parameter contribution: SAGE
[19] and Intra-Distillation [40]. We also revisit two methods in continual learning literature that
utilizes parameter importance during training: Elastic Weight Consolidation [14] and LFR-CM [10].

SAGE [19] SAGE balances parameter contribution by using a larger learning rate on less important
parameters. Formally, given a importance score It(θj) of a set of parameters θj at update iteration t,
the learning rate at time t is given by

ηt(θj) = ηt
|It(θj)− Ît(θj)|+ ϵ

It(θj) + ϵ
(2)

Where ϵ is a smoothing hyper-parameter and Ît(θj) is an exponential moving average to overcome
the variance in estimating parameter importance from individual batches:

Ît(θj) = βÎt−1(θj) + (1− β)It(θj)

SAGE introduces computational overhead in calculating the parameter importance in every mini-
batch, which does not scale well when the number of parameters is large. In practice, they only adapt
the learning rate of attention projection weights and feed-forward weights, which is the same set of
parameters that dropout is applied to.

Intra-Distillation [40] Intra-distillation utilizes the randomness in dropout to train on a subset of
parameters to balance contribution. Formally, we first pass the same input x to obtain k different
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probability distributions p1, ...pk, the Intra-Distillation loss is the sum of the symmetric divergence
between each distribution to the average of the distributions:

p̄ =

k∑
i=1

pi

LID =

k∑
i=1

KL(pi∥p̄) + KL(p̄∥pi) (3)

Then Intra-Distillation loss is then added to the standard training objective:

L = L(θ) + αLID

Where α is a scaling factor. Intra-distillation induces significant computational overhead. We need to
compute k forward passes and store all of the output logits from the forward passes to compute the
symmetric KL divergence between them.

Elastic Weight Consolidation [14] Elastic Weight Consolidation was proposed to solve the problem
of catastrophic forgetting in continual learning by regularizing the updates of more important parame-
ters. Suppose B is the task the model is currently trained on and A is the task that we don’t want the
model to forget, the loss objective for EWC is:

L = LB(θj) +
λ

2
Fj(θj − θj,A)

2

Where θj,A is the parameter θj trained to convergence on task A, and Fj is the Fisher information
importance of parameter θj .

LFR-CM [10] LFR-CM freezes the parameters with high Fisher information and only trains on
the parameter with low Fisher information. The only difference is that EWC makes the update of
parameters with high Fisher information smaller while LFR-CM freezes them. The loss function of
LFR-CM is:

L = LB(θj) ∗ 1(Fj ≤ τ)

Where τ is a pre-defined threshold for filtering out the important parameters that are frozen during
training on task B. LFR-CM can be viewed as "Hard-EWC" in that instead of assigning a continuous
importance score to each parameter, it assigns a binary label of important/non-important and freezes
the parameters labeled as important instead of regularizing them from updating more aggressively.

3 A Unified View of Importance Weighted Optimization

In this section, we first empirically show that EWC can also improve performance on a single task by
balancing parameter contribution (§3.1). We then theoretically draw connections between methods
that adapt the learning rate according to parameter importance (SAGE) to methods that add a regular-
ization term weighted by parameter importance (EWC) (§3.2). We analyze the induced computational
overhead for each method and propose an efficient way to balance parameter contribution with
minimal extra compute (§3.3). At last, we propose a unified framework that includes state-of-the-art
importance-weighted optimization methods as instantiations (§3.4).

3.1 EWC Improves Model Generalizability on a Single Task

EWC regularizes important parameters from updating too aggressively from a consolidated weight
learned from the previous task in continual learning. However, we can view each mini-batch of data
as a separate task, we can apply EWC on a single task, and the loss becomes:

L = LB(θ
t−1
j ) +

λ

2
Fj(θ

t−1
j − θt−2

j )2
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Standard Update SAGE Weighted Freezing

Figure 1: Illustration of the effect of SAGE and Weighted Freezing on gradient updates when the x
direction has a higher importance score than the y direction. Standard updates treat both directions
as equal (left) while SAGE updates more aggressively on the direction with a low importance score
(middle). Weighted Freezing (right) assigns a higher probability for the parameter to update to the
green dot and a lower probability for the parameter to update to the red dot.

We train a standard Transformer [36] model and apply our modified version of EWC after the
warm-up steps on the IWSLT’ 14 De-En Machine Translation dataset and compare it with a baseline
of standard training. The results in Table 2 show that EWC can improve model performance even
applied to a single task because it balances parameter contribution.

Standard Training EWC

IWSLT’ 14 De-En 32.75 33.20

Table 2: BLEU scores on the IWSLT’ 14 German-English Machine Translation task. Using EWC on
a single task can also improve performance over standard training.

3.2 Connecting SAGE with EWC

Equation 2 describes the update rule for SAGE that scales down the learning rate for parameters
with a high importance score, calibrated by an exponential moving average of previous iterations of
parameter importance estimation. Here we simplify the parameter update rule for SAGE as:

θtj ← θt−1
j − η

C

It
∇L(θt−1

j ) (4)

Where C is a constant that calibrates the uncertainty of the parameter importance calculated through
a mini-batch of data.

We derive the update rule for EWC (λ is the regularization loss scaling constant):

θtj ← θt−1
j − η∇L(θt−1

j )− ηλ(θt−1
j − θj,A) (5)

Rearranging 5 gives us:

θtj ← θt−1
j (1− ηλFj)− η∇L(θt−1

j ) + ηλFiθj,A (6)

Both of these methods can be written in the following functional form:

θtj ← f(Ij)θ
t−1
j + g(Ij)η∇L(θj) + h(Ij)

Where f(Ij), g(Ij) and h(Ij) are functions of the parameter importance score.

3.3 Weighted Freezing

Although previous methods have achieved success in balancing parameter contribution to boost
model performance, they either require additional memory equivalent to the memory required to
store a full copy of the model parameters (SAGE, EWC) or, additionally, multiple forward passes
(Intra-Distillation).
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We propose to freeze the important parameters and only train on the unimportant ones to encourage
the equal contribution of parameters. While SAGE uses a moving average to calibrate the uncertainty,
we calibrate the uncertainty by generating a Bernoulli mask on the gradients, such that important
parameters have a higher chance of being frozen. Although we expect the mini-batch estimation of
parameter importance to have high variance, it is still a good estimate of what are the most important
parameters. The update rule for Weighted Freezing is

θt ← θt−1 − η∇L(θt−1) ∗ Bernoulli(Ĩt) (7)

Where Ĩt =
It−max It

max It−min It
is the normalized importance score at iteration t. We define our Weighted

Freezing method in Algorithm 1.

Algorithm 1 Weighted Freezing (⊙ denotes Hadarmard Product)

Require: Function for estimating parameter importance I , Total training iterations T , Data D =
(x, y), Loss function L, Model parameters θ, learning rate schedule η().
for t = 1 to T do

Sample a mini-batch of data xt, yt
Compute gradients∇L(θt;xt, yt)
It = I(θt,∇L(θt;xt, yt)) ▷ Importance score estimation
It =

It−min(It)
max(It)−min(It)

▷ Normalize scores

M = Bernoulli(Ĩt) ▷ Generate masks
∇L(θt;xt, yt)) = ∇L(θt;xt, yt))⊙M
θt+1 = θt − ηt∇L(θt;xt, yt))

end for

3.4 Unified View of Importance Weighted Optimization

Unifying equation 4 and 6, we cast existing methods that harness parameter importance during
training as a modification term to the parameter itself f(I), plus a modification term to the gradient
g(I), plus a constant h(I) where each term is a function of the parameter importance.

Method Importance Metric I f(I) g(I) h(I)

SAGE [19] Loss-Preserving 1 C/I 0
EWC [14] Empirical Fisher 1− ηλI 1 ηλIθA
LFR-CM [10] Empirical Fisher 1 1(I ≤ τ) 0

Weighted Freezing (Ours) Magnitude 1 Bernoulli(Ĩ) 0
Table 3: An overview of importance weighted optimization methods and the weights that depend on
parameter importance metric I. Here τ in LFR-CM is a threshold to filter out important parameters to
be frozen during training.

The main difference between the methods is in their way of calculating parameter importance: SAGE
uses the loss-preserving metric while EWC and its variants use an approximated version of the
empirical fisher. Empirically, we found that using the Magnitude metric Weighted Freezing performs
the best (see table 6), while also being the most computationally efficient. Therefore Weighted
Freezing uses the magnitude-based metric to estimate the importance of the parameters.

4 Experiments

We evaluate our method on three semantically diverse tasks in natural language processing to
verify that our method improves the generalizability of models: zero-shot cross-lingual transfer
fine-tuning on multilingual models, machine translation, and English fine-tuning on natural language
understanding.
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4.1 Datasets

We directly verify that balancing parameter contribution improves the generalizability of models
using cross-lingual transfer tasks (§4.2). In this case, a multilingual model is fine-tuned on data
for a task only in English but is tested in other languages. This requires strong generalizability of
our model since there is a domain (language) mismatch between the training data and the test data.
We experiment with a state-of-the-art multilingual encoder XLM-RoBERTa-Large [3]. We use the
official Huggingface implementation [38], and choose XNLI [4] and PAWS-X [41], two textual
entailment classification tasks, as well as two multilingual question answering datasets: MLQA [17]
and TyDiQA [2] from the XTREME benchmark [12].

To verify that our method generalizes beyond text classification and to compare with previous
methods, we experiment on the IWSLT’ 14 Machine Translation dataset (§4.3). We use the official
fairseq [28] codebase implementation and select the ‘transformer_iwslt_de_en’ as our model. We
report the BLEU [29] scores for each translation direction.

4.2 Experiment Setups

For a fair comparison, we implement a modified version of SAGE that does not store a moving
average of parameter importance, which roughly consumes the same amount of memory as storing an
additional copy of the full model without the embedding and LayerNorm parameters. We denote our
resource-constrained version of SAGE as "SAGE*". Since Intra-Distillation passes the same input
through the model multiple times, we constrain the number of updates for Intra-Distillation to be
one-third of other methods and set the number of forward passes to be 3 for a fair comparison. We
denote this resource-constrained version of Intra-Distillation as "Intra-Distillation (1/3)".

We note that even under our resource-constrained setting, Intra-Distillation (1/3) and SAGE* still
require more computational resources than our method since Intra-Distillation needs to store the
output logits for every forward pass and SAGE requires you to calculate the Hadarmard product
between the gradient and parameters for each weight matrix. We report the experiment results on the
full version of SAGE and Intra-Distillation as "SAGE (Full)" and "Intra-Distillation (Full)".

4.3 Main Results

Cross-lingual Transfer. The results on 4 cross-lingual transfer tasks that require strong generaliz-
ability are in Table 4. Our weighted freezing method outperforms state-of-the-art methods under a
constrained resource setting in all the tasks that we tested (first 4 rows), resulting in a 1.8 increase
in accuracy in XNLI and a 0.2 increase in accuracy in PAWS-X over the best performance of state-
of-the-art methods. On two question-answering tasks, weighted freezing also outperforms existing
methods when using the same level of resources, and is only behind 0.6 F1 and 1.3 Exact Match
against the best-performing method in each task.

XNLI
Acc.

PAWS-X
Acc.

MLQA
F1/EM

TyDiQA-GoldP
F1/EM

With the same amount of compute

Standard Training 76.4 87.6 71.2/54.8 66.9/46.2
SAGE* 76.2 87.0 69.5/51.0 67.0/45.9
Intra-Distillation (1/3) 77.1 88.0 72.1/54.2 67.2/46.5
Weighted Freezing (Ours) 79.1 88.2 72.5/55.1 67.1/46.9
With 2 × additional memory

SAGE (Full) 78.4 87.9 73.1/56.3 67.4/47.3
Intra-Distillation (Full) 78.1 88.6 73.5/55.8 67.1/48.4

Table 4: Experiment Results on Cross-lingual Transfer on the development set of two semantic
entailment classification tasks (XNLI, PAWS-X) and two question answering tasks (MLQA, TyDiQA-
GoldP). Our method outperforms the state-the-of-art methods under a resource-constrained setting
and achieves comparable performance when using much fewer resources. Note that Intra-Distillation
(Full) also uses 3 × more compute.

7



Standard Weighted Freezing SAGE Intra-Distillation
0

5000

10000

15000

20000

25000

30000

35000

40000
xnli
paws-x

Standard Weighted Freezing SAGE Intra-Distillation
0

5000

10000

15000

20000

0

2870

7335

22558

Figure 2: Averaged seconds per epoch (left) and additional memory used (right) for fine-tuning on
PAWS-X and XNLI for different parameter importance weighted optimization methods, our method
is 3× as faster as Intra-Distillation [40] and uses less than 50% of the additional memory compared
to SAGE [19] while achieving comparable performance.

We included the full version of SAGE and Intra-Distillation in the bottom two rows of Table 4. Our
method can perform comparably to the full version of SAGE and Intra-Distillation albeit using much
fewer resources.

De Es He Ar

With the same amount of compute

Standard Training 32.75 38.74 34.30 35.13
SAGE* 32.08 38.63 33.92 35.28
Intra-Distillation (1/3) 33.10 37.76 34.44 36.21
Weighted Freezing (Ours) 33.30 39.15 36.02 36.15

With 2 × additional memory

SAGE (Full) 33.24 39.52 34.30 36.68
Intra-Distillation (Full) 33.74 39.87 35.71 36.44

Table 5: Results on the IWSLT’ 14 X-En Machine Translation dataset. Weighted Freezing outperforms
other methods with the same amount of compute, and is only behind 0.26 BLEU points when
compared with methods that consume more than 2× of additional memory.

Machine Translation. The machine translation results from 4 directions on the IWSLT’ 14 dataset is
reported in Table 5. Our method outperforms strong baselines in 3 out of four translation directions
under a resource-constrained setting and is only behind 0.26 BLEU points compared to the best-
performing model.

4.4 A Detailed Study on Efficiency

We report the averaged clock time in seconds for training on 1 epoch and the memory consumption
in MiB on previous methods and Weighted Freezing in Figure 2. All experiments are conducted
on a single NVIDIA RTX A6000 (48GB). Intra-Distillation induces serious overhead by requiring
multiple forward passes through the model (in this case 3), resulting in more time and memory to
store the logits of each forward pass. Although SAGE uses a comparable amount of time, it requires
more than 2× the additional memory over weighted freezing. This means that applying SAGE would
result in an out-of-memory issue on a more common, commodity-level 24GB GPU, while Weighted
Freezing does not. This is a necessary overhead for SAGE since it needs to additionally store the
exponential moving average of importance score for every parameter.
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4.5 Ablation of Importance Metrics

We ablate the effect of different parameter importance metrics on our method and SAGE. We
empirically found that using the magnitude-based metric for Weighted Freezing performs the best
and requires much fewer floating point operations than calculating other metrics.

IWSLT’ 14 De-En
BLEU

PAWS-X
Acc.

Standard Training 32.75 87.6

WF Magnitude 33.30 88.2
WF Loss-preserving 32.18 88.1
WF Fisher 32.74 87.2

SAGE Magnitude 31.27 87.9
SAGE Loss-preserving 33.24 87.9
SAGE Fisher 32.15 87.4

Table 6: Ablation studies on different importance metrics for Weighted Freezing (WF) and SAGE.

We did not observe an agreement on which metric performs the best for SAGE on the two tasks we
tested. We also found that using the empirical fisher information performs the worst for both our
method and SAGE. We hypothesize that it is because there is a higher variance in estimating the
empirical fisher using mini-batches. Therefore, we recommend using the magnitude-based metric
to estimate parameter importance during training since it is the easiest to compute and performs
comparably to the loss-preserving metric.

5 Related Works

Parameter Importance Estimation. Numerous works have proposed ways to quantify the impor-
tance of individual parameters inside a neural network [16, 27, 14, 22, 23, 37]. The most prominent
way is to utilize a second-order Taylor expansion [16, 11] to measure the increase in loss when the
parameter is zeroed out. Such a method is then applied to convolutional neural network [27] pruning,
as well as Transformers pruning [43, 18]. Another line of work uses the magnitude of the parameter
as its importance, under the assumption that in converged neural networks, the gradient should be
negligible. Magnitude-based importance is also applied to model pruning of convolutional neural
nets [6] and large transformer models [20, 30, 1]. [23] shows equivalency between magnitude and
loss-preserving metric in neural network pruning. Another line of work uses the curvature around
parameters, approximated by the trace of the empirical Fisher [24] information matrix to quantify the
importance of individual parameters [14, 35, 10, 21].

Importance Guided Optimization. Parameter importance is useful beyond model pruning: by
forcing parameters to contribute equally, one can learn models that have better generalization
performance. [19] uses a larger learning rate on less important parameters, and [40] shows that
self-distillation has an implicit effect of balancing parameter contribution. [14, 35] uses the empirical
fisher to guide model updates in continual learning. [10] also uses the empirical fisher to find
parameters that are in a smooth region and only update them in continual learning of neural machine
translation. Studies have found that the trace of the Fisher information matrix is correlated with the
learning dynamics as well as the generalizability of models [21]

6 Conclusion

We propose a unified view of methods that harnesses parameter contribution throughout training
and identify the serious computational overhead induced by existing methods which hinders their
usage when the model size is scaled up. We propose Weighted Freezing which balances parameter
contribution with minimal additional resources. We demonstrate that Weighted Freezing improves
the performance of Transformer based models on various NLP tasks.
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We acknowledge that we only conducted experiments on Transformer [36] based models, though
there exist massive redundant neurons in other network architectures [6, 7, 31] which we expect to
behave similarly with our method.
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A Text Classification

RTE
Acc.

CoLA
Mcc.

MRPC
F1

Standard Training 67.9 61.3 89.1
SAGE- 68.2 58.3 88.4
Intra-Distillation (K=3) 68.1 61.0 89.3
Weighted Freezing (Ours) 69.0 62.3 90.2
SAGE (Full) 69.3 60.3 89.0
Intra-Distillation (Full) 71.4 62.5 89.9

Table 7: Experiment Results of Weighted Freezing on 3 text classification tasks from the GLUE
benchmark. The first 4 rows correspond to the resource-constrained setting. Our method outperforms
state-of-the-art methods with the same amount of resources and performs comparably to the full
version of these methods with much fewer resources.

B Hyper-Parameters: XLM-RoBERTa

Learning Rate Batch Size Max Length Epochs Optimizer

XNLI 5e-5, 1e-5, 1e-6 16 256 3 AdamW
PAWS-X 5e-5, 1e-5, 1e-6 16 256 5 AdamW
TyDiQA, MLQA 7e-6, 3e-6 16 512 5 AdamW

Table 8: Hyper-parameters for XLM-R experiments

C Hyper-Parameters: Machine Translation

Warm Up Updates 4000
Batch Tokens 4096
Max Updates 20,000
Adam β (0.9, 0.99)
Max Learning Rate 5e-4, 1e-3
Weight Decay 0.0001

Table 9: Hyper-parameters for IWSLT’ 14 Machine Translation
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Figure 3: A comparison between the number of additional FLOPs required for standard training
Intra-Distillation, and Weighted Freezing (Ours), calculated according to [13]. Our method scales
well as the model size becomes larger.

D Scaling
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